MATH 260 — EXAM #1 Name: 2"
Winter Session 2019 s

Directions: Please show all work for maximum credit. No work = no credit. Point values for
each problem are given. There is a total of 102 points on this exam. This exam will be taken
out of 100 points. Please show all work and clearly indicate your answers. Remember, this
exam is to show what you know. You may not use any notes, the textbook, mobile phones, or
any unauthorized sources for assistance during this exam. You may not use a calculator on this
exam. Clearly indicate the answer to each question. Any work on separate paper that you would
like graded must be indicated on each corresponding problem on this exam. You will need your
Mt. SAC student identification card to submit this exam. Good luck!

(10 points) 7. Solve the following system of equations by converting to an augmented matrix
and using Gaussian elimination.
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2. Given the following matrices:

4 5 58 4
A= , B= e 0 b
68 1 2 50 941

Determine the following.
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2 continued. Given the following matrices:
4 6
A={4 5 —2} B:[S 3 —7} ol ] D=[3 4}
6.8 1 =259 2.1
5 2
(5 points) e. D’ . = 4@ |ty
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(5 points) f. Solve for the matrix X: X +24=3B
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3. Assume that the following matrices represent an augmented matrix. Determine the solution
of the corresponding system of equations.

I 4 9 ) My HLBG S p =) T =
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(10 points) 4. Given the following matrix 4. Find A", if it exists.

o
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5. Determine the inverse of each of the following elementary matrices.

1o = .

(3 points) a. E,=|{0 1 0 Fli= 4 oy ©
o0 0-—C

1 00 S | 60

(3 points) b. E,=|0 0 1 o g9 i
010 g 1 ©

40 0 L
(3 points) ¢. E;=[0 1 0 e
g 61 '

(8 points) 6. Determine a polynomial function whose graph passes through the points (1,4) 5

(2,0), and (3,12). = £1-bxe oy ?
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(6 points) 7. Prove the following statement: Let 4 be an nx»n matrix and ¢ be a nonzero scalar.

Then, (cA)_l = lA'1 .
¢
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(6 points) 8. Prove the following statement: Let 4 be an mxn matrix and let Bbe an nx p
matrix. Then, (4+B) = 4" +B".
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(6 points) 9. Prove the following statement: Let 4, B, and C be mxn matrices. Then,
A+(B+C)=(4+B)+C

AaB1E) = [0]4 Toytén]
= f@ (b4 x|

= by thy)iey,)
= Tatlyle o]

= [448) +C

(6 points) 10. Prove the following statement: Let 4 and B be invertible 7x 7 matrices. Then,
(4B)" =B'4"
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