: Question

(3 points) 1. Determine the distance between the points P(2, -6, 3) and Q(4, 1, -2).

: Question

(3 points) 1. Determine the distance between the points P(5,2,-3) and Q(-1,4,2).

Question #2 Pick 1 questions, 0 pts per question

: Question

(3 points) 2. Find the parametric form of the equation of the line passing P(4, -6, 2) and Q(8, -2, 3).

: Question

(3 points) 2. Find the parametric form of the equation of the line passing P(7,3,-2) and Q(3,5,-1).

Question #3 Pick 1 questions, 0 pts per question

 $\uparrow + \otimes \hat{\underline{\mathbf{m}}}$

Question

- 3. Given the following vectors: $\vec{a}=<3,-1,5>$, $\vec{b}=<-4,2,1>$, and $\vec{c}=<6,1,3>$. Determine the following:
- (2 points) a. $3\vec{a} 4\vec{b}$
- (2 points) b. |a|
- (3 points) c. $\vec{a} \cdot \vec{c}$
- (2 points) d. The unit vector in the direction of \vec{c}
- (4 points) e. $\vec{a} \times \vec{b}$
- (3 points) f. $proj_{\vec{b}}\vec{a}$
- (4 points) g. Find the area of the parallelogram determined by ${f b}$ and ${f c}$

: Question

- 3. Given the following vectors: $\vec{a}=<2,-4,1>$, $\vec{b}=<5,3,-6>$, and $\vec{c}=<4,2,3>$. Determine the following:
- (2 points) a. $5\vec{a} 2\vec{c}$
- (2 points) b. $|\vec{c}|$

(3 points) c. $\vec{b} \cdot \vec{c}$

(2 points) d. The unit vector in the direction of **b**

(4 points) e. $\vec{a} \times \vec{c}$

(3 points) f. $proj_{\vec{c}}\vec{a}$

(4 points) g. Find the area of the parallelogram determined by \vec{a} and \bf{b}

Question #4 Pick 1 questions, 0 pts per question

↑+◎竝

: Question

(4 points) 4. Find the equation of the plane that passes through the points P(3,5,-1), Q(1,4,2), and R(-2,1,5).

: Question

(4 points) 4. Find the equation of the plane that passes through the points P(-2,5,3), Q(1,4,-3), and R(4,2,-1).

Question #5 Pick 1 questions, 0 pts per question

: Question

(4 points) 5. A sled is pulled along a level path through snow by a rope. A 20-lb force acting at an angle of 35° above the horizontal moves the

•

sled 80 ft. Find the work done by the force. (Round your answer to the nearest whole number.)

Question

(4 points) 5. A sled is pulled along a level path through snow by a rope. A 30-lb force acting at an angle of **25**° above the horizontal moves the sled 60 ft. Find the work done by the force. (Round your answer to the nearest whole number.)

Question #6 Pick 1 questions, 0 pts per question

Question

(4 points) 6. Find the distance from the point P(2,3,1) to the plane 3x + 2y + 4z = 6.

Question

(4 points) 6. Find the distance from the point P(1,4,2) to the plane 3x + 2y + 4z = 6.

Question #7 Pick 1 questions, 0 pts per question

(4 points) 7. Find the volume of the parallelepiped determined by the vectors $\vec{a}=<3,6,-1>$, $\vec{b}=<1,4,2>$, and $\vec{c}=<-1,3,4>$.

: Question

(4 points) 7. Find the volume of the parallelepiped determined by the vectors $\vec{a}=<1,5,-3>$, $\vec{b}=<3,1,-2>$, and $\vec{c}=<2,4,3>$.

Question #8 Pick 1 questions, 0 pts per question

$$\uparrow +$$

Question

(4 points) 8. Find the parametric form of the equation of the tangent line to the curve traced by the vector function

$$ec{r}(t)=\sqrt{t^2+48}\hat{i}+\ln(t^2+48)\hat{j}+(t)\hat{k}$$
 when $t=1$.

Question

(4 points) 8. Find the parametric form of the equation of the tangent line to the curve traced by the vector function

$$ec{r}(t)=\sqrt{t^2+35}\hat{i}+\ln(t^2+35)\hat{j}+(t)\hat{k}$$
 when $t=1$.

Question

(3 points) 9. Evaluate the following limit: $\lim_{t\to 0} \vec{r}(t)$ where $\vec{r}(t) = \langle \cos(2t), t^2 + 1, (e^{2t} + 3) \rangle$.

: Question

(3 points) 9. Evaluate the following limit: $\lim_{t\to 0} \vec{r}(t)$ where $\mathbf{r}(t) = \langle t^3 + 1, \sin(2t), (e^{2t} + 3) \rangle$.

Question #10 Pick 1 questions, 0 pts per question

Question

(6 points) 10. Find the length of the curve traced by $\mathbf{r}(t) = 6\hat{\mathbf{i}} + (t^2)\hat{\mathbf{j}} + (\frac{1}{9}t^3)\hat{\mathbf{k}}$ on $0 \le t \le 1$.

Question #11 Pick 1 questions, 0 pts per question

: Question

11. Given the position vector

$$ec{r}(t)=(6t^2)\hat{i}+(\sin t-t\cos t)\hat{j}+(\cos t+t\sin t)\hat{k}$$

(4 points) a. Find the unit tangent vector, $\hat{T}(t)$.

(4 points) b. Find the unit normal vector, $\hat{N}(t)$.

(4 points) c. Find the the binormal vector, $\hat{B}(t)$.

(3 points) d. Find the curvature, κ .

Question #12 Pick 1 questions, 0 pts per question

Question

(4 points) 12. Evaluate the following integral:

$$\int [rac{1}{t^4}\hat{i} + (\cos 4t)\hat{j} + (e^{5t})\hat{k}]dt$$

: Question

(4 points) 12. Evaluate the following integral:

$$\int [rac{1}{t^3}\hat{i} + (\sin 2t)\hat{j} + (e^{3t})\hat{k}]dt$$

Question #13 Pick 1 questions, 0 pts per question

: Question

(4 points) 13. Evaluate the following integral:

$$\int_0^2 [(t^2+3)\hat{i} + (\sin t)\hat{j} + (e^{2t})\hat{k}]dt$$

(4 points) 14. Given the acceleration vector

$$ec{a}(t) = (7t)\hat{i} + (e^t)\hat{j} + (e^{-t})\hat{k}$$
. Find the position vector, $ec{r}(t)$, given

$$\mathbf{r}(0) = 4\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$$
 and $ec{v}(0) = 3\hat{i} + 5\hat{j} - 2\hat{k}$

: Question

(4 points) 14. Given the acceleration vector

$$\vec{a}(t) = (5t)\hat{i} + (e^t)\hat{j} + (e^{-t})\hat{k}$$
. Find the position vector, $\vec{r}(t)$, given

$$ec{r}(0)=3\hat{j}+4\hat{k}$$
 and $ec{v}(0)=4\hat{i}-2\hat{j}+3\hat{k}$

Question #15 Pick 1 questions, 0 pts per question

Question

15. <u>Identify</u> the following surfaces.

(1 point) a.
$$\frac{x^2}{16} + \frac{y^2}{25} + \frac{z^2}{9} = 1$$

(1 point) b.
$$\frac{x^2}{25} + \frac{y^2}{9} = \frac{z^2}{16}$$

(1 point) c.
$$x^2 + y^2 + z^2 = 36$$

Question

•

15. <u>Identify</u> the following surfaces.

(1 point) a.
$$\frac{x^2}{16} + \frac{y^2}{4} = \frac{z^2}{25}$$

(1 point) b.
$$x^2+y^2+z^2=25$$

(1 point) c.
$$\frac{x^2}{25} + \frac{y^2}{9} + \frac{z^2}{16} = 1$$