:: Question

(3 points) 1. Estimate $\int_R \int (x^2y^2 + 2y) dA$ where $R = [0,4] \times [0,4]$ by dividing R into four equal squares and evaluating the function at the upper right corner of each square.

Question #2 Pick 1 questions, 0 pts per question

Question

(5 points) 2. Find the volume under the parabolic cylinder $z=x^2$ above the region enclosed by the parabola $y=6-x^2$ and the line y=x in the xy-plane.

:: Question

4

(5 points) 3. Find the average value of the function f(x,y) = xy over the region bounded by the lines x = 1, y = 1, in the first quadrant.

Question #4 Pick 1 questions, 0 pts per question

:: Question

(6 points) 4. Use a double integral to find the volume of the solid region bounded above by the paraboloid $z=9-x^2-y^2$ and below by the unit circle $x^2+y^2=1$ in the xy-plane.

Question #5 Pick 1 questions, 0 pts per question

 $\uparrow +$ \bigcirc \bigcirc

:: Question

(6 points) 5. Use a double integral to find the area inside one leaf of $r = 4 \sin 3\theta$.

Question #6 Pick 1 questions, 0 pts per question

Question

•

(5 points) 6. Find the area of the surface of the part of 3x + 2y + 4z = 5 that lines in the first octant.

Question #7 Pick 1 questions, 0 pts per question

Question

7. Given the region D bounded by y=x+2 and $y=x^2$. If the region has the density function $\rho(x,y)=kx^2$, determine the following:

(4 points) a. M_x

(4 points) b. M_y

(4 points) c. *M*

(2 points) d. The center of mass

Question #8 Pick 1 questions, 0 pts per question

:: Question

(6 points) 8. Use a triple integral to find the volume of the solid bounded by the paraboloids $z = 8 - x^2 - y^2$ and $z = x^2 + y^2$.

:: Question

(7 points) 9. Use cylindrical coordinates to evaluate $\int \int_E \int (x-y)dV$ where E is the solid that lies between the cylinders $x^2+y^2=1$ and $x^2+y^2=16$, above the xy-plane, and below the plane z=y+4.

Question #10 Pick 1 questions, 0 pts per question

Question

(7 points) 10. Use spherical coordinates to evaluate $\int \int_E \int (x^2+y^2) dV \text{ where E is the solid that lies between the spheres} \\ x^2+y^2+z^2=4 \text{ and } x^2+y^2+z^2=9.$

Question #11 Pick 1 questions, 0 pts per question

Question

- 11. Given the following integral: $\int_0^{\frac{2}{3}} \int_y^{2-2y} (x+2y) e^{(y-x)} dx dy$
- (3 points) a. Using the substitutions u = x + 2y, v = x y, solve for x and y as functions of u and v.
- (3 points) b. Transform the boundaries of the region D from the xy-plane to the uv-plane.
- (2 points) c. Find the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$

