MATH 280 - QUIZ #2

Name: |LM

Directions: Please show all work for maximum credit. This quiz is worth 14 points. Good

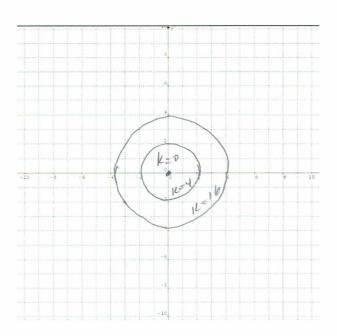
1. Find f_{xx} , f_{xy} , f_{yx} , f_{yy} : Given $f(x,y) = x^3 \sin(2y)$. Determine the following.

(1 point) a.
$$f_x = 3 \times^2 \le \text{Inlay}$$

(1 point) b.
$$f_y = 2 x^3 \cos(\partial y)$$

(1 point) c.
$$f_{xx} = 6 \times 5/N (\partial y)$$

(1 point) d.
$$f_{xy} = (y^2 \cos(\partial y))$$


(1 point) e.
$$f_{yy} = -4 x^3 \sin(\delta y)$$

(3 points) 2. Find the following limit:
$$\lim_{\substack{(x,y)\to(1,1)\\x\neq 1}} \frac{xy-y-2x+2}{x-1}$$

= $\lim_{x \to 0} y(x-1) - 2(x-1) - \lim_{x \to 0} (x-1)(y-1) = \lim_{x \to 0} (y-1) = 1-1 = -($

Math 280 – Quiz #2

(3 points) 3. Given the following function: $f(x, y) = x^2 + y^2$. Sketch the function's level curves when k = 0, k = 4, and k = 16.

(3 points) 4. Find the equation of the tangent plane at the point $P_0(1,-2,1)$ on the surface $z = 3x^2 - y^2 + 2x$.

$$f_{x} = (0x+2)$$
 $f_{y} = -\partial y$
 $f_{x}(1,-\delta) = 8$ $f_{y}(1,-3) = 4$
 $f_{y}(1,-\delta) = 8$ $f_{y}(1,-3) = 4$
 $f_{y}(1,-\delta) = 8$ $f_{y}(1,-\delta) = 4$
 $f_{y}(1,-\delta) = 8$ $f_{y}(1,-\delta) = 4$
 $f_{y}(1,-\delta) = 8$