Directions: Please show all work for maximum credit. This quiz is worth 16 points. Good luck!

(5 points) 1. Solve the following differential equation: $\frac{dy}{dx} = \frac{2x(y-1)}{x^2+3}$

$$\frac{dy}{y-1} = \frac{2x}{x^2+3} dx$$

$$\int \frac{1}{y-1} dy = \int \frac{2x}{x^2+3} dx$$

$$\ln|y-1| = \ln|x^2+3| + C$$

(2 points) 2. Given that $y = x^2 + 2x + c$ is a solution to a first-order differential equation. Find a solution to the corresponding initial-value problem given the initial condition of y(2) = 1.

$$1 = \lambda^{2} + \lambda(\lambda) + C$$

$$1 = 4 + 4 + C$$

$$-7 = C$$

$$y = x^{2} + \lambda x - 7$$

- 2. Given the differential equation $\frac{dy}{dx} = y^2 y 2$.
- (1 point) a. Determine all equilibrium solutions.

$$\frac{dy}{dx} = (y-\lambda)(y+1)$$

$$y = \lambda, y = -1$$

(3 points) b. Determine the regions when the solutions are increasing or decreasing.

$$\frac{1}{t} + \frac{1}{t} + f'$$
Increasing on $(-\infty, -1) \cup (3, \infty)$
decreasing on $(-1, +)$

(3 points) c. Determine the regions when the solutions are concave up or concave down.

$$\frac{d^2y}{dx^2} = (\partial y - 1) \frac{dy}{dx} = (\partial y - 1)(y - \lambda)(y + 1)$$

$$\frac{-1}{x^2} \frac{1}{x^2} \frac{1}{x^2}$$

(2 points) d. Classify the equilibrium solutions as stable or unstable.

2 increasing of g=2 unstable

Jecreasing 1

Increasing 1

Increasing 1