Directions: Please show all work for maximum credit. This quiz is worth 16 points. Good luck!

(3 points) 1. Solve the following differential equation: $\frac{dy}{dx} = x\sqrt{1-y^2}$

$$\frac{dy}{\sqrt{1-y^2}} = x dx$$

$$\sin^2 y = \frac{x^2}{x^2} + c$$

(4 points) 2. Solve the following differential equation: $\frac{dy}{dx} + 4xy = x^3 e^{x^2}$

$$e^{3x^{2}} = \int_{X}^{3} e^{x^{2}} e^{2x^{2}} dx = \int_{X}^{3} e^{3x^{2}} dx$$

$$e^{3x^{2}} = \int_{X}^{3} e^{x^{2}} e^{2x^{2}} dx = \int_{X}^{3} e^{3x^{2}} dx$$

$$u = x^{2} \quad dw = x e^{3x^{2}} dx$$

$$du = \partial x dx \qquad w = 3x^{2}$$

$$dw = 6x dx$$

$$\frac{1}{6} dw = x dx$$

$$v = \frac{1}{6} e^{3x^{2}}$$

$$\frac{1}{6} x^{2} e^{3x^{2}} - \frac{1}{16} e^{3x^{2}} dx$$

$$e^{3x^{2}} + C$$

- 3. Given the differential equation $\frac{dy}{dx} = 3 + 2y y^2$.
- (1 point) a. Determine all equilibrium solutions.

$$-(y^{2}-)y^{-3}) = -(y^{-3})(y+1)$$

$$y=3, y=-1$$

(3 points) b. Determine the regions when the solutions are increasing or decreasing.

(3 points) c. Determine the regions when the solutions are concave up or concave down.

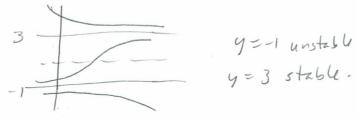
$$y'' = (\lambda - \lambda y)y' = \lambda(1 - y)(-(y - 3)(y + 1))$$

$$= -\lambda(1 - y)(y - 3)(y + 1)$$

$$y'' > 0$$

$$y'' < 0$$

$$y'' < 0$$


$$y'' < 0$$

$$y'' > 0$$

$$Concave down (-\infty, -1) \cup (1, 3)$$

$$y'' < 0$$

(2 points) d. Classify the equilibrium solutions as stable or unstable.

