Directions: Please show all work for maximum credit. This quiz is worth 16 points. Good luck!

(6 points) 1. A tank contains 40 L of a solution into which 10 g of salt is dissolved. A solution containing 2 g/L of salt flows into the tank at a rate of 5 L/min, and the well-stirred mixture flows out at a rate of 2 L/min. What is the concentration of salt in the tank after 30 minutes?

$$\frac{dV}{dt} = 5 - \lambda = 3$$

$$dV = 3 dt$$

$$V = 3 t + C_1$$

$$V(0) = 40$$

$$C_1 = 40$$

$$V = 3t + 40$$

$$\frac{dA}{dt} + \frac{2}{3t+40}A = 10$$

$$\mu(t) = e^{\int \frac{1}{3t+40}dt} dt$$

$$= e^{\int \frac{1}{3t+40}} = (3t+40)^{2} dt$$

$$\frac{d}{dt} \left[(3t+40)^{2/3} A \right] = 10 \cdot 3t + 40^{3/3} dt$$

$$(3t+40)^{4/3} A = 10 \cdot 5(3t+40)^{5/3} dt$$

$$(3t+40)^{4/3} A = 12 \cdot (3t+40)^{5/3} + C_2$$

$$A = 2 \cdot (3t+40) + C_2 \cdot (3t+40)^{-3/3}$$

$$10 = 80 + C_2 \cdot (40)^{-3/3}$$

$$-70 = C_2 \cdot (40)^{-3/3}$$

$$C_2 = -70 \cdot (40)^{3/3}$$

$$A = 4(3t+40) - 70 \cdot (40)^{3/3} \cdot (3t+40)^{-3/3}$$

$$A(30) = 2(3(30) + 40) - 70(40)^{2/3} (3(31) + 40)^{-2/3}$$

$$A = 226,09619629$$

$$V(30) = 3(30) + 40 = 130 L$$

(5 points) 2. Consider a 20-volt electromotive force that is applied to an RL-series circuit in which the resistance is 4 ohms and the inductance is 0.1 henry. Find the current i(t) on the capacitor if i(0) = 0.

$$\frac{1}{10} \frac{di}{dt} + 4i = 20$$

$$\frac{di}{dt} + 40i = 200$$

$$u(t) = e^{540 dt} = e^{40t}$$

$$\frac{d}{dt} = e^{40t}$$

(5 points) 3. A small metal bar, whose initial temperature was 30°C, is dropped into a large container of water with a temperature of 90°C. How long will it take the bar to reach 70°C if it is known that its temperature increases 2° in one second?

$$T = T_{m} + Ce^{kt}$$

$$T = 90 + Ce^{kt}$$

$$T = 90 + Ce^{kt}$$

$$T = 90 - 60e$$

$$T =$$