MATH 290 - QUIZ #5

Name: LEY

Directions: Please show all work for maximum credit. There are 16 points on this quiz. Good luck!

(2 points) 1. Solve the following differential equation.

$$3x^{2}y''-2xy'+2y=0$$

$$3m^{2}(2-3)m+2=0$$

$$3m^{2}-5m+2=0$$

$$(3m-2)(m-1)=0$$

$$m=73,1$$

$$y=c_{1}x^{2/3}+c_{2}x$$

(5 points) 3. Solve the following differential equation by using variation of parameters.

$$y'' + y = \sec x$$
 $y'' + y = \sec x$
 $y' = \cos x = -\tan x$
 $y'' + y = \sec x$
 $y'' + y = \sec x$
 $y' = -\tan x$
 $y'' + y = \sec x$
 $y' = -\tan x$
 $y'' + y = \sec x$
 $y' = -\tan x$
 $y' = -\cot x$

(4 points) 3. A mass weighing 20 pounds, attached to the end of a spring, stretches it 6 inches. Initially, the mass is released from rest from a point 6 inches below the equilibrium position. Find the equation of motion, x(t).

$$F = mg$$

$$30 = m(3+)$$

$$\frac{d^{\frac{1}{2}}}{dt^{-}} + 40 \times = 0$$

$$\frac{d^{\frac{1}{2}}}{dt^{-}} + 64 \times = 0$$

$$\frac{d^{\frac{1}{2}}}{dt^{-}} + 64 \times = 0$$

$$2 = 16 \times 10^{-1} \cdot 10^{-$$

(5 points) 4. A mass weighing 3.2 pounds stretches a spring 1.6 feet. The entire system is placed in a medium that offers a damping force that is numerically equal to 0.4 times the instantaneous velocity. Find the equation of motion, x(t), if the mass is initially released from rest from a point a point 1 foot above the equilibrium position. What type of motion is this?

F=m8

3.
$$d = m(3+)$$

0.1 $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(1) $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(2) $\frac{d^{3}v}{dt^{2}} + 4\frac{dx}{dt} + dx = 0$

(3) $\frac{d^{3}v}{dt^{2}} + 4\frac{dx}{dt} + dx = 0$

(4) $\frac{d^{3}v}{dt^{2}} + 4\frac{dx}{dt} + dx = 0$

(5) $\frac{d^{3}v}{dt^{2}} + 4\frac{dx}{dt} + dx = 0$

(6) $\frac{d^{3}v}{dt^{2}} + 4\frac{dx}{dt} + dx = 0$

(7) $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(8) $\frac{d^{3}v}{dt^{2}} + 4\frac{dx}{dt} + dx = 0$

(9) $\frac{d^{3}v}{dt^{2}} + 4\frac{dx}{dt} + dx = 0$

(10): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(11): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(12): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(13): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(14): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(15): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(16): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(17): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(18): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(18): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(19): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(10): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(10): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(10): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(11): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(12): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(13): $\frac{d^{3}v}{dt^{2}} + 0.4\frac{dv}{dt} + dx = 0$

(14): $\frac{d^{3}v}{$