| Name: | KEY |  |
|-------|-----|--|
|       |     |  |

**Directions:** Please show all work for maximum credit. There are 16 points on this quiz. Good luck!

(5 points) 1. A mass weighing 12 pounds, attached to the end of a spring, stretches it 2 feet. Initially, the mass is released from a point 1 foot below the equilibrium position with an upward velocity of 4 ft/s. Find the equation of motion, x(t), and find the equation of motion as a single sine function.

$$F = k \times \frac{3}{8} \frac{d^{2}x}{dt^{2}} + b \times = 0$$

$$(a) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(b) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(c) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} + 16 \times = 0$$

$$(d) = k \times \frac{d^{2}x}{dt^{2}} +$$

(5 points) 2. Find the charge on the capacitor in an LRC-series circuit when the inductance is 1/4 henry, the resistance is 20 ohms, the capacitance is 1/300 farad, and the electromotive force is E(t) = 0 V. The initial charge on the capacitor is q(0) = 4 C and the initial current is i(0) = 0 A.

$$\begin{array}{l}
L \frac{d^{3}q}{dt^{3}} + R \frac{dq}{dt} + L q = E(t) \\
L \frac{d^{3}q}{dt^{3}} + 300 \frac{q}{dt} + 300 \frac{q}{dt} = 0 \\
L \frac{d^{3}q}{dt^{3}} + 300 \frac{q}{dt} + 300 \frac{q}{dt} = 0 \\
L \frac{d^{3}q}{dt^{3}} + 300 \frac{q}{dt} + 300 \frac{q}{dt} = 0 \\
L \frac{d^{3}q}{dt^{3}} + 300 \frac{q}{dt} + 300 \frac{q}{dt} = 0 \\
L \frac{d^{3}q}{dt^{3}} + 300 \frac{q}{dt^{3}} = 0 \\
L \frac{d^{3}q}{dt^{3}} + 300 \frac{q}{dt$$

(6 points) 3. A force of 0.2 lb stretches a spring 6 inches. With one end fixed, a mass weighing 6.4 pounds is attached to the other end of the spring. The entire system is placed in a medium that offers a damping force that is numerically equal to 1.2 times the instantaneous velocity. Find the equation of motion, x(t), if the mass is initially released from rest from a point 6 inches above the equilibrium position. What type of motion is this?

$$F = k \times 0.36 = k \cdot (0.741)$$

$$0.34b = k \cdot (0.741)$$

$$0.3d^{2}k + bduk + 0.4k = 0$$

$$0.3d^{2}k + bduk + 2k = 0$$

$$0.3$$

ion. What type of motion is this?

$$\frac{d^{2}x}{dt^{2}} + \frac{\partial dx}{dt^{2}} + \frac{\partial x}{dt^{2}} + \frac{\partial x}{dt^{2}}$$